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Abstract
This report describes our submission to the fixed track of

task 1 in the first Chinese Continuous Visual Speech Recog-
nition Challenge (CNVSRC 2023). Our system exploits au-
dio data in the training stage to improve the accuracy of visual
speech recognition (VSR). Specifically, we firstly train an au-
dio speech recognition (ASR) network. Then, we train a video
to audio converter (VAC) which aims to convert video data to
the latent features of the ASR network. Finally, we combine
VAC and ASR networks and finetune both networks jointly on
video data only. The resulted network only needs video data for
inference. We also explore three ensemble methods to further
enhance the performance. Our best system achieves an Char-
acter Error Rate (CER) of 39.4707% on the official CNVSRC-
Single.Eval split.

1. Data
We use CN-CVS and CNVSRC-Single.Dev in our system devel-
opment. We use two split strategies. The first strategy follows
the official split of the two datasets. The second strategy uses
the training/validation/test splits of CN-CVS and the training
split of CNVSRC-Single.Dev as the training data, and it uses the
validation split of CNVSRC-Single.Dev as the validation data.
We choose one of the two splits for different training stages of
our system. Please see section 2.4 for more details.

2. Models
The intuition of our system is to utilize audio data to train an
ASR system as the core for VSR. We expect this leads to bet-
ter performance compared to training on video data only, since
audio data generally achieves far better speech recognition ac-
curacy [1, 2] due to its less ambiguity. We design our system
based on the method proposed in [3]. It consists of an ASR sys-
tem and a video to audio converter (VAC). The ASR system per-
forms speech recognition using audio, and VAC converts video
data to latent features of the ASR system. By connecting VAC
to the ASR system, we can use video data only for inference.
Fig. 1 shows an illustration of our system.

2.1. Pre-processing

For video data, we use the code of the CNVSRC 2023 base-
line [4] for pre-processing. Briefly speaking, it detects facial
landmarks for each frame, aligns the facial images and crops
the lip region. For audio data, we use raw audio waveforms
without further processing.

2.2. ASR System

Our ASR system adopts the same end-to-end network struc-
ture as the CNVSRC 2023 baseline [4]. The whole model in-
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Figure 1: The CZUR system for CNVSRC 2023.

cludes an audio frontend, an transformer encoder and a trans-
former decoder. The audio frontend extracts features frame by
frame from raw audio waveforms. The transformer encoder
exploits the global relations between audio features at differ-
ent frames. The transformer decoder predicts the probabil-
ity of the next token given the output features of the encoder
and the predicted tokens of previous frames. For detailed net-
work structure we use the audio backbone defined in the CN-
VSRC 2023 baseline config files train cncvs 4s.yaml1

and train cncvs 4s 30s.yaml2.

2.3. Video to Audio Converter (VAC)

Since ASR generally achieves better performance than VSR,
we aim to utilize the well-trained ASR system for VSR. To
achieve this, we use a video to audio converter (VAC) to trans-
fer video frames to latent ASR features, so that we can feed the
transferred features through the ASR system to get token pre-
dictions. Our VAC is designed based on the method proposed
in [3]. It employs the video frontend and the VSR encoder in the
CNVSRC 2023 baseline [4] for feature conversion. The video
frontend extracts features from video frames. The extracted fea-
tures are fed to the VSR encoder which aims to transfer videos
features to the features output by the audio frontend of the ASR
system, as shown in Fig. 1.

Moreover, we note that [3] suggests video features repre-
senting lip movements can be better transferred to latent audio
features, in comparison to the video features aligned with the
text decoding task. Therefore, we initialize the video frontend
and the first four encoder layers of VAC with the pre-trained

1https://github.com/MKT-Dataoceanai/CNVSRC2023Baseline/
blob/master/conf/train cncvs 4s.yaml

2https://github.com/MKT-Dataoceanai/CNVSRC2023Baseline/
blob/master/conf/train cncvs 4s 30s.yaml



weights of the CNVSRC 2023 baseline on the CN-CVS dataset3.
We freeze these layers and train the rest encoder layers with ran-
dom initialization. We expect that the shallow layers we freeze
provide features more related to lip movements than the text de-
coding task. At the same time this strategy avoids training from
scratch which could take longer to converge.

Last but not least, we use the masking scheme in [3] to fa-
cilitate the transfer of video features to audio features. Specifi-
cally, audio features (i.e. output features of the audio frontend in
the VSR system) are masked and added to the output features
of the frozen VAC layers. Then the summed features are fed
through the rest VAC encoder layers to predict the audio fea-
tures before the masking. The initial masking ratio is small (0.3
in our setting). The ratio increases along with training epochs
and eventually reaches 1.0 at the end of the training. Such a
scheme eases the initial stage of the training by providing the
network with more information on audio features. And it grad-
ually removes the audio information as the training proceeds,
pushing the network to smoothly learn to convert video features
to audio features.

2.4. Model training

We design a multi-stage training scheme for our model. The
ASR system is trained on audio data at first. Then, we train
VAC with both audio and video data. Finally, trained VAC and
ASR system are connected and finetuned on video data only.

Training of ASR system. Following the curriculum learn-
ing scheme in the CNVSRC 2023 baseline [4], we firstly train
the ASR system on utterances less than 4 seconds on CN-CVS,
using the split strategy 1 mentioned in Section 1. Then, we
train the ASR system on utterances between 4 seconds and
30 seconds, using the split strategy 2 in Section 1 on com-
bined CN-CVS and CNVSRC-Single.Dev datasets. We adopt
the CTC/Attention loss used in the CNVSRC 2023 baseline for
ASR system training.

Training of VAC. We adopts the above curriculum learning
scheme to train VAC as well. VAC is trained on utterances less
than 4 seconds on CN-CVS with the split strategy 1, before it
is trained on utterances between 4 seconds and 30 seconds on
combined CN-CVS and CNVSRC-Single.Dev datasets with the
split strategy 2. For VAC training, we use mean square error be-
tween the predicted features (i.e. output of VAC) and the target
features (i.e. output of the audio frontend of the ASR system) as
the loss. Recall that some VAC layers are frozen as mentioned
in Section 2.3.

Joint finetuning of ASR and VAC. After the ASR system
and VAC are separated trained, we simply connect the two sys-
tems by feeding the VAC output through the ASR system to
predict tokens. At this stage, we firstly finetune VAC with the
ASR system frozen for a few epochs. Then, we unfreeze all
layers and train the whole network. All training at this stage
is performed on combined CN-CVS and CNVSRC-Single.Dev
datasets with the split strategy 2.

Additionally, instead of selecting checkpoints based on val-
idation metrics, we track the inference CERs of the models
on a randomly selected 200-utterance subset of the validation
split of CNVSRC-Single.Dev. We select the epochs with top
performance for model ensemble and submission (see below).
This is because we have found mismatch between the train-
ing/validation metrics and actual inference CERs in the joint
finetuning stage. Specifically, although the validation decoding

3model avg last10 cncvs 4s 30s.pth in [4]

accuracy kept rising throughout the training, the inference CER
actually increases rather than decreases after a certain number
of epochs. We think this may due to the discrepancy between
the training and inference process. The decoder learns to pre-
dict next-token probabilities with ground truth tokens as pre-
fixes during training, but it has to predict the next token based
on its own previous predictions in inference. For the VSR task,
the CER is high, so the prefixes predicted by the model in infer-
ence may be very different from the ground truth. As a result,
the inference data distribution deviates from the training data
distribution, and it may lead to performance mismatch between
training/validation and inference.

2.5. Model Ensemble

We exploit three model ensemble methods: intra-model fu-
sion, inter-model weight fusion and decoding score fusion. In
terms of intra-model fusion, we average the weights of differ-
ent checkpoints produced during the training of a model. For
inter-model weight fusion, we attempt to average the weights
of models trained with different settings. As for decoding score
fusion, we use mean fusion of CTC and attention probabilities
produced by different models to calculate next-token probabil-
ities in the decoding stage. We train several models with dif-
ferent hyper-parameter settings. For each model, we obtain a
set of candidates using intra-model fusion. After that, we per-
form inter-model weight fusion with candidates from different
models. Finally, models with top validation performance in the
intra-model fusion and inter-model weight fusion stages are se-
lected for decoding score fusion.

2.6. Analysis

At the first glance, our system seems to be a CNVSRC 2023
baseline with doubled encoder depth. However, the whole train-
ing process makes our system more than a deeper baseline. In
this subsection, we analyze the differences between our system
and the baseline, together with the possible advantages brought
by our training process.

First, the baseline trains the whole network using video data
only. With limited data, a deeper baseline is prone to overfitting.
In contrast, we train different parts of our network with different
data, before we finetune on video data only. We suppose this
helps to better avoid overfitting when training a deeper network.

Second, we think the data variability in our training process
might also lead to better performance. Specifically, we can view
the separate training of the ASR system and VAC as pre-training
before the final joint finetuning. Since different data modalities
and targets are used for the two pre-training tasks, our model
might better exploit the underlying data distribution in training.
So it might attain better performance.

Third, we set more specified targets for our network. The
baseline simply takes video frames as input and let the network
output token probabilities. It is well-known that this is hard
task. Actually, viewing the whole task as a blackbox may in-
crease the difficulty of optimization, and it could lead to sub-
optimal solutions. Differently, we explicitly specify two differ-
ent targets for the two parts of our system, respectively. The
deeper part of our system (i.e. the ASR system) is initially
trained to perform speech recognition using audio signal, while
the shallower part of our system (i.e. VAC) transfers video fea-
tures to audio features. The former task is well-studied and
promising performance can be guaranteed [5, 6, 7], while the
latter task is also explored in recent research and good perfor-
mance is reported [3]. Such manually-designed tasks provides



the network with more specified and more achievable optimiza-
tion targets, and hence it might produce better models.

Table 1: CER of our submissions on CNVSRC-Single.Eval. In-
tra: intra-model suion; Inter: inter-model weight fusion; score:
decoding score fusion.

Submission ID Ensemble CERIntra Inter Score
1 ✓ 41.3193%
2 ✓ ✓ 39.9156%
3 ✓ 40.3947%
4 ✓ ✓ 39.4707%
5 ✓ ✓ ✓ 39.7367%

3. Results
We have made five submissions to the submission system.
Tab. 1 shows CERs of our submissions on the official CNVSRC-
Single.Eval evaluation set. Note that we list ensemble choices
to provide brief information on each submission. The ensemble
choice in the table does not form a controlled ablation study,
as the models, checkpoints and the number of models used for
ensemble are different in each submission.

4. Resource
We train our models on single GPUs with gradient accumula-
tion and mixed-precision training. We use two GeForce RTX
3090s and one A100 to train our system.
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