CNVSRC 2023

Chinese Continuous Visual Speech Recognition Challenge

CNVSRC 2023 Technical Report

Chen Chen, Lantian Li, Dong Wang

Tsinghua University & Beijing University of Posts and Telecommunications

2023.12.09

NCMMSC-CNVSRC 2023 Workshop, Suzhou, China

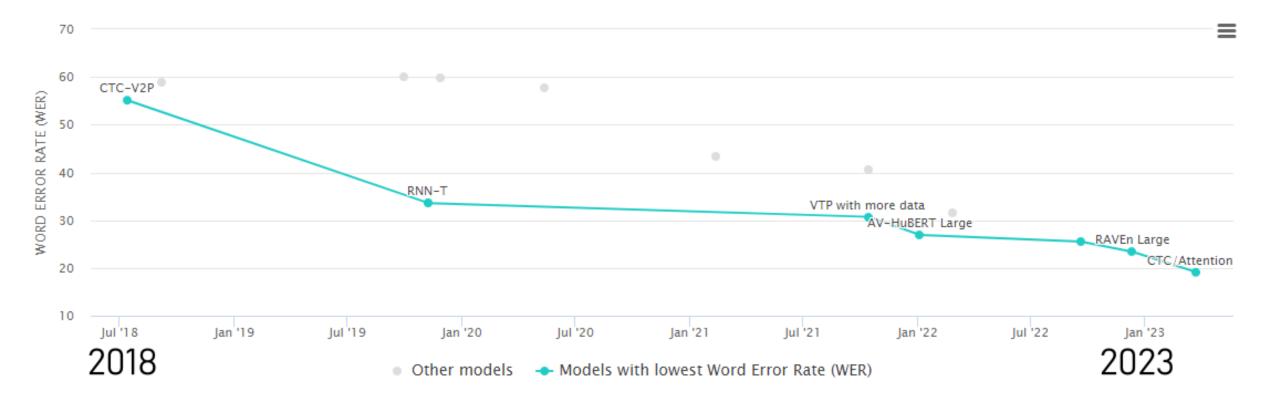
Data and Tasks

D Baseline

D Technical Summary

Data and Tasks

D Baseline


D Technical Summary

The Origin of CN-CVS Dataset

The lack of Chinese Audio-video data constrain the development of Chinese VSR

NCMMSC-CNVSRC 2023 Workshop

• English VSR: Auto-AVSR[1] reach 19.1% WER on LRS3[2] in the wild.

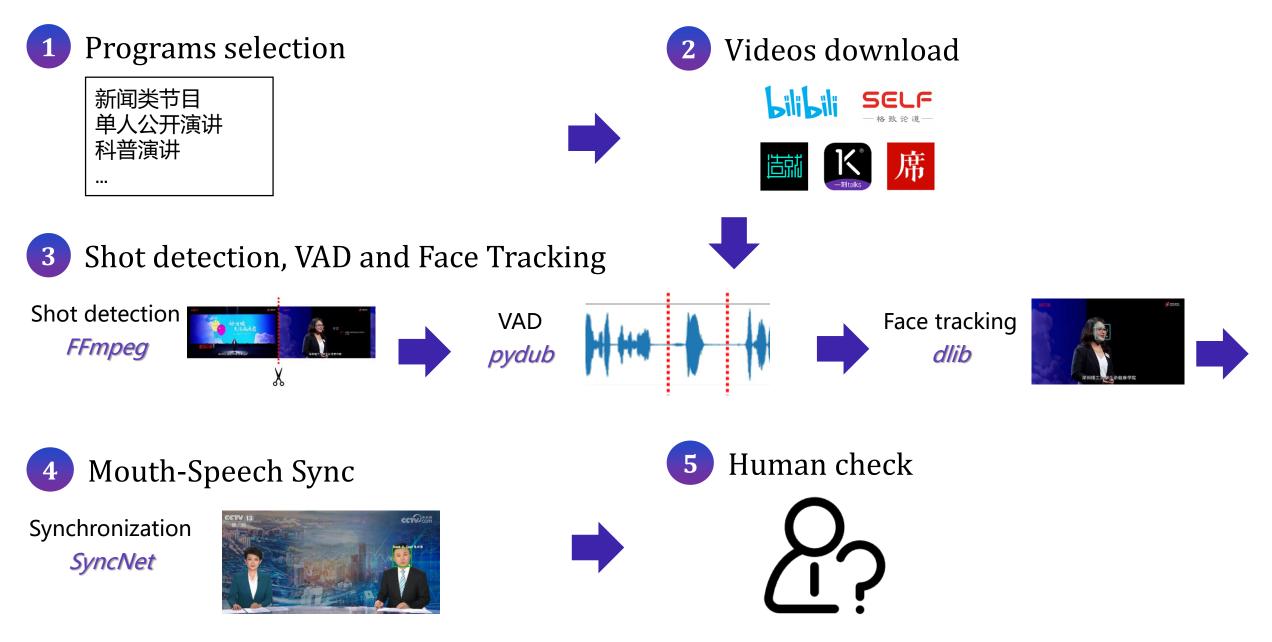
 [1] P. Ma, A. Haliassos, A. Fernandez-Lopez, H. Chen, S. Petridis, and M. Pantic, "Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels," ICASSP 2023
 [2] T. Afouras, J. S. Chung, and A. Zisserman, "LRS3-TED: a large-scale dataset for visual speech recognition." <u>https://paperswithcode.com/sota/lipreading-on-lrs3-ted</u>

NCMMSC-CNVSRC 2023 Workshop

The Origin of CN-CVS Dataset

The lack of Chinese Audio-video data constrain the development of Chinese VSR

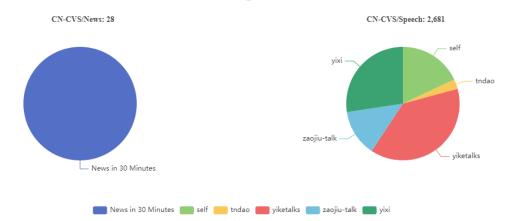
• Chinese VSR: [3] reach 9.1% WER on CMLR[4] in the lab.

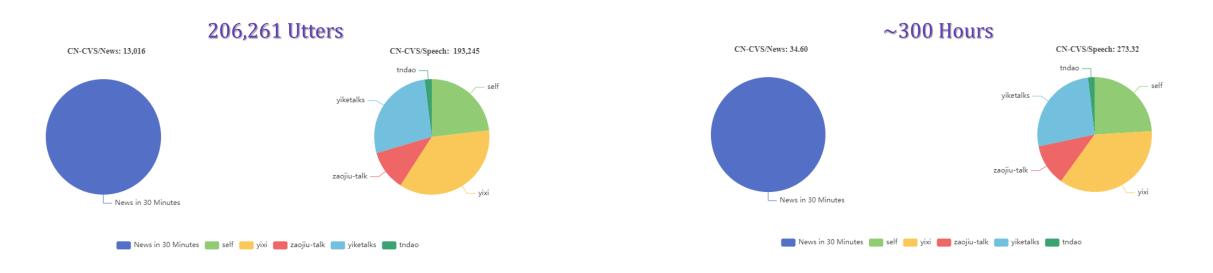

[3] P. Ma, S. Petridis, and M. Pantic, "Visual Speech Recognition for Multiple Languages in the Wild."
[4] Y. Zhao, R. Xu, and M. Song, "A Cascade Sequence-to-Sequence Model for Chinese Mandarin Lip Reading." https://paperswithcode.com/sota/lipreading-on-cmlr

The Origin of CN-CVS Dataset

The lack of Chinese Audio-video data constrain the development of Chinese VSR

数据集名称	文献	语言	内容类型	数据来源	词汇量	说话人数量	句子数量	时长	摄像机角度
GRID	Cooke et al. (2006)	英语	语法模式	录制朗读	51	33	33000	27h	0°
TCD-TIMIT	Harte et al. (2015)	英语	句	录制朗读	5954	62	6913	$\approx 20 h$	0°, 30°
Lip2Wav	Prajwal et al. (2020)	英语	句	讲课节目	\approx 5k/spk	5	-	≈120h	自然角度
LRW	Chung et al. (2017a)	英语	词	电视新闻	500	-	≈539000	173h	自然角度
LRS	Chung et al. (2017b)	英语	句	电视新闻	$\approx \! 17k$	-	118116	75.5h	自然角度
LRS2	Afouras et al. (2019)	英语	句	电视新闻	$\approx 60 \mathrm{k}$	-	≈145000	224.5h	自然角度
LRS3	Afouras et al. (2019)	英语	句	演讲节目	$\approx 70 \mathrm{k}$	≈10k	≈165000	475h	自然角度
VoxCeleb1	Nagrani et al. (2017)	英语	句	网络视频	-	1251	153516	352h	自然角度
VoxCeleb2	Chung et al. (2018)	多语言	句	网络视频	-	6112	1128246	2442h	自然角度
AVSpeech	Ephrat et al. (2018)	多语言	句	演讲授课	-	≈150k	-	$\approx 4700 \mathrm{h}$	自然角度
CAS-VSR-W1k	Yang et al. (2019)	汉语	词	电视节目	1k	>2000	718018	≈140h	自然角度
CMLR	Zhao et al. (2019)	汉语	句	电视新闻	3517	11	102076	pprox88h	0°
CN-CVS/News	Chen et al. (2023)	汉语	句	电视新闻	-	28	13016	34.6h	0°
CN-CVS/Speech	Chen et al. (2023)	汉语	句	演讲节目	-	2529	193245	273.4h	自然角度


Data Collection Pipeline



Data Profile

2,557 Speakers

Data Profile

- Additional datasets for CNVSRC 2023
 - CNVSRC-Single
 - 1 Speaker
 - 100 Hours Audio-video paired data
 - CNVSRC-Multi
 - 43 Speakers
 - 1 Hour per Speaker Audio-video paired Data

	CNVSR	C-Single	CNVSRC-Multi		
DataSet	Dev	Eval	Dev	Eval	
# Videos # Hours	25,947	2,881 8.41	20,450	10,269	
# Hours	94.00	8.41	29.24	14.49	

Task Description – Single-speaker VSR

NCMMSC-CNVSRC 2023 Workshop

Fixed Track

- ONLY CN-CVS and CNVSRC-Single.Dev is allowed for training/tuning ALL the components of the system.
- This track is designed to compare different techniques under the SAME data resource.

Open Track

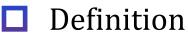
- ANY data sources can be used for developing ALL the components of the system.
- This track is designed to examine the performance Frontier of the present technologies.

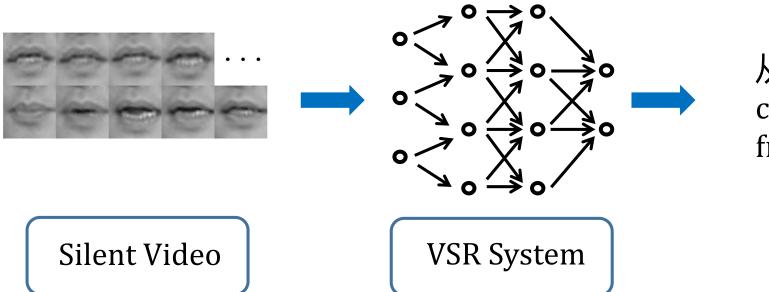
	Fixed Track	Open Track
T1: Single-speaker VSR	CN-CVS, CNVSRC-Single.Dev	No constraint
T2: Multi-speaker VSR	CN-CVS, CNVSRC-Multi.Dev	No constraint

NCMMSC-CNVSRC 2023 Workshop

Task Description – Multi-speaker VSR

Fixed Track


- ONLY CN-CVS and CNVSRC-Multi.Dev is allowed for training/tuning ALL the components of the system.
- This track is designed to compare different techniques under the SAME data resource.


Open Track

- ANY data sources can be used for developing ALL the components of the system.
- This track is designed to examine the performance Frontier of the present technologies.

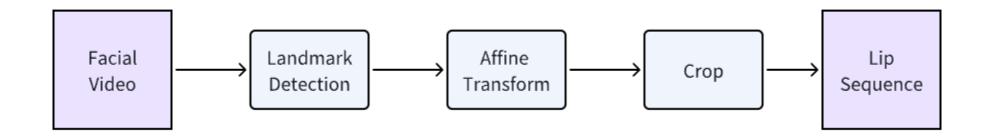
	Fixed Track	Open Track
T1: Single-speaker VSR	CN-CVS, CNVSRC-Single.Dev	No constraint
T2: Multi-speaker VSR	CN-CVS, CNVSRC-Multi.Dev	No constraint

Task Description – VSR

从嘴唇读出内容… cong zui chun … from lip movements …

Performance measurement

$$ext{CER} = rac{\mathcal{N}_{ ext{Ins}} + \mathcal{N}_{ ext{Subs}} + \mathcal{N}_{ ext{Del}}}{\mathcal{N}_{ ext{Total}}} imes 100\%$$

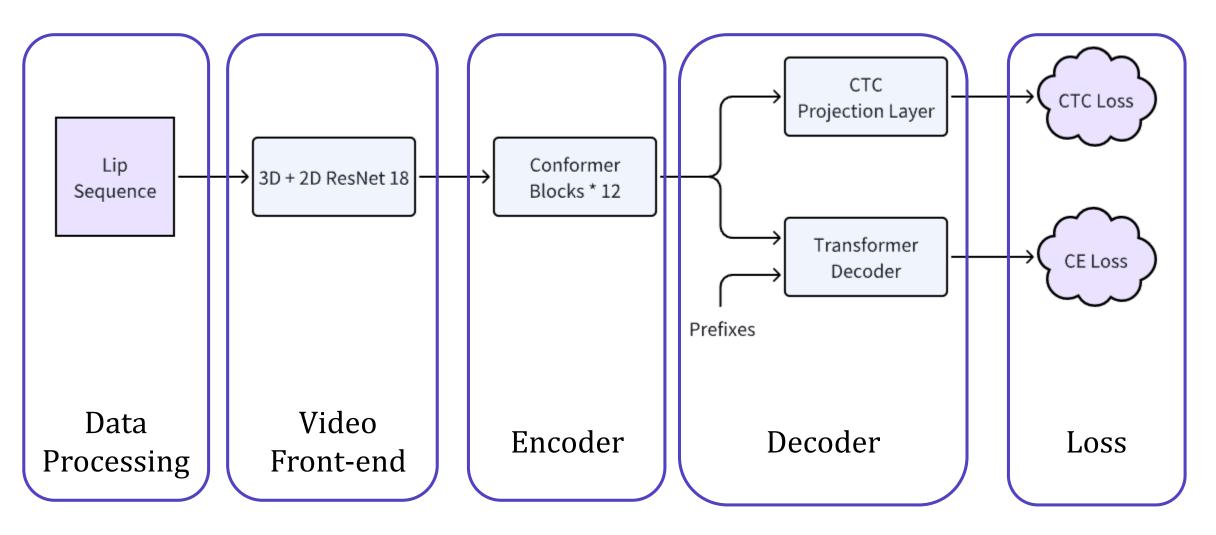

Data and Tasks

D Baseline

D Technical Summary

Baseline

- Data processing
 - Video Data



- Text Data
 - SentencePiece *

*<u>https://pypi.org/project/sentencepiece/</u>

Baseline

Model Structure

Data and Tasks

D Baseline

Technical Summary

Representative Techniques (6 Teams)

Components	Methods
Data processing	Face Detection, Face Alignment, Multi-scale Lip Region Extraction
Data Augmentation	Speed perturbation, Adaptive Time Masking, Random Erase, Flip, Generated Facial Video
Video Front-end	3D+2D ResNet18, ResNet3D
Encoder	Conformer, Branchformer, E-Branchformer
Decoder	Transformer Decoder, Bi-Transformer Decoder
Auxiliary design	BPE/Character as Modeling Unit, Phoneme-level prediction task
Loss function	CTC/Attention Loss, CTC Loss in shallow layers, Cross Modality Similarity Loss
Training strategy	Pretrain + Fine-tune, ASR Knowledge Distillation
Language Model	RNNLM, Transformer LM
System fusion	Score-level average

Technical <u>H</u>ighlights

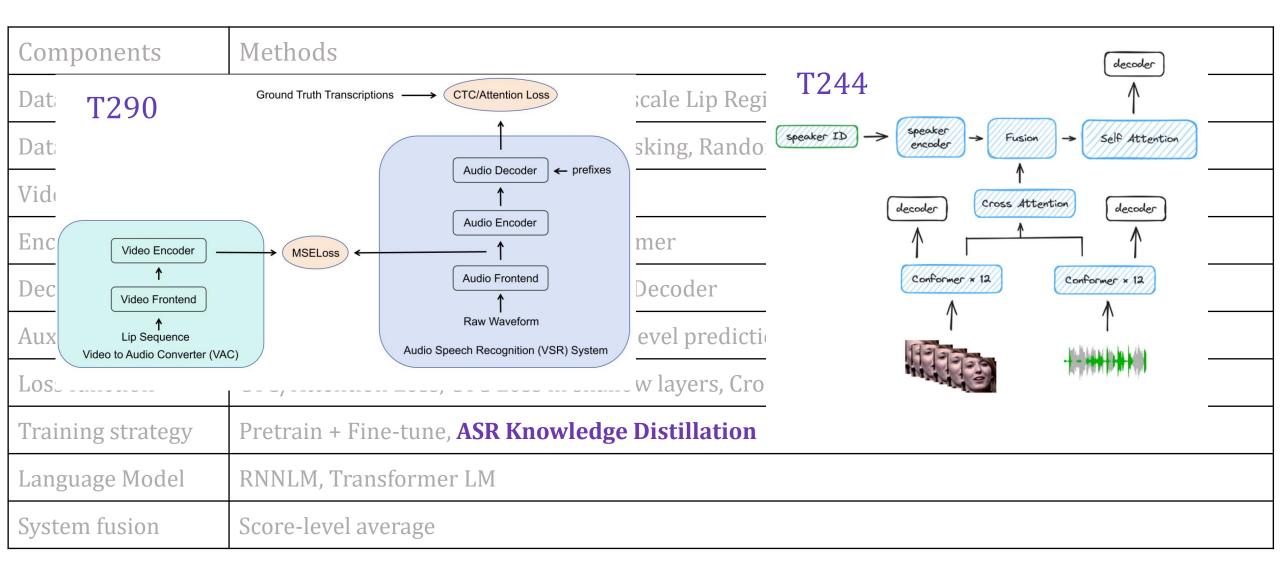
Components	Methods
Data processing	Face Detection, Face Alignment, Multi-scale Lip Region Extraction
Data Augmentation	Speed perturbation, Adaptive Time Masking, Random Erase, Flip, Generated Facial Video
Video Front-end	3D+2D ResNet18, ResNet3D
Encoder	Conformer, Branchformer, E-Branchformer
Decoder	Transformer Decoder, Bi-Transformer Decoder
Auxiliary design	Character as Modeling Unit, Phoneme-level prediction task
Loss function	CTC/Attention Loss, CTC Loss in shallow layers, Cross Modality Similarity Loss
Training strategy	Pretrain + Fine-tune, ASR Knowledge Distillation
Language Model	RNNLM, Transformer LM
System fusion	Score-level average

Data processing

Components	Method	S							
Data processing	Face Det	ection,	Face	e Ali	ignme	ent, M ı	ılti-sc	ale Li	Lip Region Extraction
Data Augmentation	Speed p	erturb	atio	n, A	dapti	ve Tin		king, I	, Random Erase, Flip, Generated Facial Video
Video Front-end	3D+2D B	looki							
Encoder				Γ23	37			_	
Decoder	Raw \	Video	∶ <mark>1</mark> Li	p Extr	actor		p Video		
Auxiliary	Size: (224	4 × 224) Encoder	_	SP	T1.Dev	Size 	${\text{T2.Dev}}$	T2.Eval	
Loss fund	System Baseline ⁶ M1	Conf Conf	Crop 96 96	× ✓	48.57 39.43	48.60 39.99	58.77 46.08	58.37 45.73	ty Similarity Loss
Training s	M2 M3 M4	Branch E-Branch E-Branch	96 96 48	ン ン メ	39.00 38.59 46.88	39.36 38.61 45.81	46.63 46.26 55.58	46.37 45.80 55.51	0
Language Mo	M5 M6 M7	E-Branch E-Branch E-Branch	64 80 96	× × ×	44.40 42.95 40.56	43.59 42.26 40.42	53.64 50.77 47.16	52.98 50.38 46.53	8
System fusion	M8 ROVER	E-Branch -	112 -	×	38.46 34.47	38.95 34.76	45.17 41.39	44.87 41.06	
<u>j</u>									

Data Augmentation

Components	Methods
Data processing	Face Detection, Face Align T237, T238 Region Extraction
Data Augmentation	Speed perturbation, A Random Erase, Flip, Generated Facial Video
Video Front-end	3D+2D ResNet18, ResNet3D
Encoder	Conformer, Branchformer, E-Branchformer
Decoder	Transformer Decoder, Bi-Transformer Decoder
Auxiliary design	Character as Modeling Unit, Phoneme-level prediction task
Loss function	CTC/Attention Loss, CTC Loss in shallow layers, Cross Modality Similarity Loss
Training strategy	Pretrain + Fine-tune, ASR Knowledge Distillation
Language Model	RNNLM, Transformer LM
System fusion	Score-level average


Auxiliary design

Components	Methods				
Data processing	Face Detection,	Face Alignment	System M1	Model Proposed syste	m 40.46
Data Augmentation	Speed perturba	tion, Adaptive T	1.62	M1 - RNNLM M2 - char uni	40.62
Video Front-end	3D+2D ResNet1	Net3D	M4	M3 - Bi-transformer	decoder 43.19
Encoder	Conforme T26	6, T267)-Br	-a <u>M5</u>	M4 - Inter CTC residua	al module 48.57
Decoder	Transformer D	Bi-Trans	former Decou	lei	
Auxiliary design	Character as M	odeling Unit, H	Phoneme-leve	l prediction task	
Loss function Training strategy	method	training set(hours)	finetuning set(ho T1 T2	urs) single-speaker dev CER	multi-speakers dev CER
Language Model	baseline char model unit +video aug	287 287 287	83.7 18 83.7 18 166 36	48.57% 43.59% 42.30%	58.77% 56.77% 54.74%
System fusion	+RNN LM +transformer LM +model fusion			42.18% 42.16% 41.50%	

Loss function

Componer	nts	Methods		
Data proc		T266		ip Regior
Data Aug	System	Model	CER (%)	b) and CTC Loss Cross-entropy Loss Cross-entropy Loss
Video Fr Encoder Decoder Auxiliary	M1 M2 M3 M4 M5	Proposed system M1 - RNNLM M2 - char unit M3 - Bi-transformer decoder M4 - Inter CTC residual module	40.46 40.62 42.36 43.19 48.57	Bi-transformer decoder CTC Layer Decoder x 6 Reversed decoder x 3 Conformer Block x 3 Add Linear CTC Loss CTC Loss
Loss functio	on	CTC/Attention Loss, CTC Loss in	n shallow la	vlayers, (
Training str	rategy	Pretrain + Fine-tune, ASR Know	ledge Distil	tillation Conv3d + ResNet18
Language M	lodel	RNNLM, Transformer LM		L'interior
System fusi	on	Score-level average		

Training strategy

CNVSRC 2023

Chinese Continuous Visual Speech Recognition Challenge

Many Thanks !

